柑橘溃疡病是影响全球柑橘种植业发展的重大检疫性病害。美国农业部2006年3月提出“柑橘健康种植计划”,并且中国2007 年7月正式启动首个柑橘非疫生产区建设*-21。目前大部分研究都集中在对这种病害的防治和检测方面,而对于带有溃疡病斑的柑橘类水果的剔除主要还是通过手工分选,对工人要求较高,且效率低,准确性差。随着图像处理技术的日趋先进和计算机硬件成本的降低及处理速度的提高,机器视觉系统在农产品品质自动检测和分级领域应用越来越广泛。由于受害果表面的溃疡病斑呈灰褐色、木栓化、海绵状,周围略隆起呈暗褐色,最外圈为黄绿晕圈5,这些特征与正常果皮表面有明显的差异,因此可以把溃疡果作为一种缺陷果,从而利用机器视觉技术进行快速检测。尽管国内外学者已对柑橘类水果表面缺陷检测分级做了大量研究**。但是,在国内还未见利用机器视觉技术对溃疡果进行检测的相关报道。在国外,Qin等基于高光谱成像技术,分别利用光谱信息散度分类理论和主成分分析法对带有溃疡斑的葡萄柚进行分类识别,两种方法识别精度均超过90%。然而,对于SID理论,需要建立参考光谱,然后图像像素与参考光谱进行匹配,但是匹配较费时,而后一种理论则利用了99个波段参与主成分分析,两种方法均不利于溃疡果的在线检测。本文主要基于高光谱成像系统,首先提取并分析每一类缺陷及正常果皮感兴趣区域(region of interest,ROD)光谱曲线并结合主成分分析法确定特征波段,接着基于特征波段进行二次主成分分析,再结合双波段比算法实现溃疡果与其他类脐橙(包括正常果及缺陷果)的分类识别。